13,139 research outputs found

    The Breakdown in Michigan\u27s Solid Waste Regulation

    Get PDF

    A study of night waking and infant crying : "What do I do to stop baby crying?" : a thesis presented in partial fulfilment of the requirements for the degree of Masterate in Education at Massey University

    Get PDF
    This study investigates maternal responses to night waking and infant crying. It illustrates differences in the degree and the type of mothering that is practised with relation to (i) previous mothering experience (ii) prior and immediate circumstances surrounding the baby's cry, and (iii) educational level of the mother. Two groups of mothers were interviewed: a primiparous group and a multiparous group. All mothers had babies between three and twelve weeks of age at the time of the interview. Mothers were from the Palmerston North area and surrounding environs, and were classified according to family socio-economic level, mother's education and number of other children. All mothers were given a similar interview to obtain information on (i) feeding style, i.e. breast or bottle (ii) amount of attention baby needs at night (iii) degree of grizzliness found in baby (iv) amount of help father gives (v) general health and temperament of baby (vi) ethnic group of mother and father (vii) what mother would do when baby wakes up and cries at night (viii) mother's attitude to spoiling the baby. In order to assess what mother does when baby wakes at night, four Vignettes were prepared to hypothesis four feeding states. Each Vignette was followed by questions on what mother would do when baby cried, and how soon she would do it. A chi-square test was applied to assess the significance of the difference between the scores of multiparous and primiparous mothers. Observations from this survey show differences in waiting times with relation to the experience of the mother, and differences in response styles to cope with baby crying at night with relation to (i) mothering experience (ii) amount of time given to attending to basic physical or social needs (iii) amount of time repeatedly spent attending to basic physical needs, and differences in feeding style with relation to the educational level of the mother. Results of some earlier surveys are reinforced, and recommendations are made for future work on this topic

    Two-Qubit Separabilities as Piecewise Continuous Functions of Maximal Concurrence

    Full text link
    The generic real (b=1) and complex (b=2) two-qubit states are 9-dimensional and 15-dimensional in nature, respectively. The total volumes of the spaces they occupy with respect to the Hilbert-Schmidt and Bures metrics are obtainable as special cases of formulas of Zyczkowski and Sommers. We claim that if one could determine certain metric-independent 3-dimensional "eigenvalue-parameterized separability functions" (EPSFs), then these formulas could be readily modified so as to yield the Hilbert-Schmidt and Bures volumes occupied by only the separable two-qubit states (and hence associated separability probabilities). Motivated by analogous earlier analyses of "diagonal-entry-parameterized separability functions", we further explore the possibility that such 3-dimensional EPSFs might, in turn, be expressible as univariate functions of some special relevant variable--which we hypothesize to be the maximal concurrence (0 < C <1) over spectral orbits. Extensive numerical results we obtain are rather closely supportive of this hypothesis. Both the real and complex estimated EPSFs exhibit clearly pronounced jumps of magnitude roughly 50% at C=1/2, as well as a number of additional matching discontinuities.Comment: 12 pages, 7 figures, new abstract, revised for J. Phys.

    Treatments of the exchange energy in density-functional theory

    Full text link
    Following a recent work [Gal, Phys. Rev. A 64, 062503 (2001)], a simple derivation of the density-functional correction of the Hartree-Fock equations, the Hartree-Fock-Kohn-Sham equations, is presented, completing an integrated view of quantum mechanical theories, in which the Kohn-Sham equations, the Hartree-Fock-Kohn-Sham equations and the ground-state Schrodinger equation formally stem from a common ground: density-functional theory, through its Euler equation for the ground-state density. Along similar lines, the Kohn-Sham formulation of the Hartree-Fock approach is also considered. Further, it is pointed out that the exchange energy of density-functional theory built from the Kohn-Sham orbitals can be given by degree-two homogeneous N-particle density functionals (N=1,2,...), forming a sequence of degree-two homogeneous exchange-energy density functionals, the first element of which is minus the classical Coulomb-repulsion energy functional.Comment: 19 pages; original manuscript from 2001 (v1) revised for publication, with presentation substantially improved, some errors corrected, plus an additional summarizing figure (Appendix B) include

    Advances in delimiting the Hilbert-Schmidt separability probability of real two-qubit systems

    Full text link
    We seek to derive the probability--expressed in terms of the Hilbert-Schmidt (Euclidean or flat) metric--that a generic (nine-dimensional) real two-qubit system is separable, by implementing the well-known Peres-Horodecki test on the partial transposes (PT's) of the associated 4 x 4 density matrices). But the full implementation of the test--requiring that the determinant of the PT be nonnegative for separability to hold--appears to be, at least presently, computationally intractable. So, we have previously implemented--using the auxiliary concept of a diagonal-entry-parameterized separability function (DESF)--the weaker implied test of nonnegativity of the six 2 x 2 principal minors of the PT. This yielded an exact upper bound on the separability probability of 1024/{135 pi^2} =0.76854$. Here, we piece together (reflection-symmetric) results obtained by requiring that each of the four 3 x 3 principal minors of the PT, in turn, be nonnegative, giving an improved/reduced upper bound of 22/35 = 0.628571. Then, we conclude that a still further improved upper bound of 1129/2100 = 0.537619 can be found by similarly piecing together the (reflection-symmetric) results of enforcing the simultaneous nonnegativity of certain pairs of the four 3 x 3 principal minors. In deriving our improved upper bounds, we rely repeatedly upon the use of certain integrals over cubes that arise. Finally, we apply an independence assumption to a pair of DESF's that comes close to reproducing our numerical estimate of the true separability function.Comment: 16 pages, 9 figures, a few inadvertent misstatements made near the end are correcte

    A priori probability that a qubit-qutrit pair is separable

    Full text link
    We extend to arbitrarily coupled pairs of qubits (two-state quantum systems) and qutrits (three-state quantum systems) our earlier study (quant-ph/0207181), which was concerned with the simplest instance of entangled quantum systems, pairs of qubits. As in that analysis -- again on the basis of numerical (quasi-Monte Carlo) integration results, but now in a still higher-dimensional space (35-d vs. 15-d) -- we examine a conjecture that the Bures/SD (statistical distinguishability) probability that arbitrarily paired qubits and qutrits are separable (unentangled) has a simple exact value, u/(v Pi^3)= >.00124706, where u = 2^20 3^3 5 7 and v = 19 23 29 31 37 41 43 (the product of consecutive primes). This is considerably less than the conjectured value of the Bures/SD probability, 8/(11 Pi^2) = 0736881, in the qubit-qubit case. Both of these conjectures, in turn, rely upon ones to the effect that the SD volumes of separable states assume certain remarkable forms, involving "primorial" numbers. We also estimate the SD area of the boundary of separable qubit-qutrit states, and provide preliminary calculations of the Bures/SD probability of separability in the general qubit-qubit-qubit and qutrit-qutrit cases.Comment: 9 pages, 3 figures, 2 tables, LaTeX, we utilize recent exact computations of Sommers and Zyczkowski (quant-ph/0304041) of "the Bures volume of mixed quantum states" to refine our conjecture

    A combinatorial formula for homogeneous moments

    Get PDF
    We establish a combinatorial formula for homogeneous moments and give some examples where it can be put to use. An application to the statistical mechanics of interacting gauged vortices is discussed.Comment: 8 pages, LaTe
    corecore